Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding

نویسندگان

  • Heleen Meuzelaar
  • Martijn Tros
  • Adriana Huerta-Viga
  • Chris N. van Dijk
  • Jocelyne Vreede
  • Sander Woutersen
چکیده

Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu- and Arg+ are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The single helix in protein L is largely disrupted at the rate-limiting step in folding.

To investigate the role of helix formation in the folding of protein L, a 62 residue alpha/beta protein, we studied the consequences of both single and multiple mutations in the helix on the kinetics of folding. A triple mutant with 11 additional carbon atoms in core residues in the amino-terminal portion of the helix folded substantially faster than wild type, suggesting that hydrophobic assoc...

متن کامل

Ion specificity in α-helical folding kinetics.

The influence of the salts KCl, NaCl, and NaI at molar concentrations on the α-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase...

متن کامل

Unfolding and Folding of the Three-Helix Bundle Protein KIX in the Absence of Solvent

Electron capture dissociation was used to probe the structure, unfolding, and folding of KIX ions in the gas phase. At energies for vibrational activation that were sufficiently high to cause loss of small molecules such as NH3 and H2O by breaking of covalent bonds in about 5% of the KIX (M + nH)(n+) ions with n = 7-9, only partial unfolding was observed, consistent with our previous hypothesis...

متن کامل

Refolding the engrailed homeodomain: structural basis for the accumulation of a folding intermediate.

The ultrafast folding pathway of the engrailed homeodomain has been exceptionally well characterized by experiment and simulation. Helices II and III of the three-helix bundle protein form the native helix-turn-helix motif as an on-pathway intermediate within a few microseconds. The slow step is then the proper docking of the helices in approximately 15 mus. However, there is still the unexplai...

متن کامل

Using loop length variants to dissect the folding pathway of a four-helix-bundle protein.

Rop is a four-helix-bundle protein formed by the association of two helix-loop-helix monomers. The short helix-connecting loop was replaced with a series of polyglycine linkers of increasing length. These mutant proteins all appear to fold via the same general mechanism as that of the wild-type protein, even at the longest loop lengths. Replacement of the wild-type two-residue loop (Asp-Ala) wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014